325 research outputs found

    Temporal Modulation of Traveling Waves in the Flow Between Rotating Cylinders With Broken Azimuthal Symmetry

    Full text link
    The effect of temporal modulation on traveling waves in the flows in two distinct systems of rotating cylinders, both with broken azimuthal symmetry, has been investigated. It is shown that by modulating the control parameter at twice the critical frequency one can excite phase-locked standing waves and standing-wave-like states which are not allowed when the system is rotationally symmetric. We also show how previous theoretical results can be extended to handle patterns such as these, that are periodic in two spatial direction.Comment: 17 pages in LaTeX, 22 figures available as postscript files from http://www.esam.nwu.edu/riecke/lit/lit.htm

    Phase II Trial of Dasatinib for Patients with Acquired Resistance to Treatment with the Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors Erlotinib or Gefitinib

    Get PDF
    Introduction:Dual inhibition of SRC- and EGFR-dependent pathways may overcome acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) for patients with lung adenocarcinoma with EGFR mutations. The SRC inhibitor dasatinib demonstrates antitumor activity in gefitinib-resistant cells lines and xenografts. Dasatinib is tolerable for patients with advanced non-small cell lung cancer, and in combination with erlotinib.Methods:We conducted this phase II study of dasatinib 70 mg twice daily in patients with EGFR-mutant lung adenocarcinoma and acquired resistance to EGFR-TKIs. After a protocol amendment based on evolving data about both drugs, patients received dasatinib at a dose of 100 mg daily with continued erlotinib after developing acquired resistance. Enrolled patients either harbored an activating mutation in EGFR or experienced clinical benefit with single-agent erlotinib or gefitinib, followed by RECIST documented progression while being treated with an EGFR-TKI.Results:Twenty-one patients were enrolled, 9 under the original trial design and 12 after the protocol amendments. We observed no complete or partial responses (0% observed rate, 95% confidence interval: 0–18%). The median time to progression was 0.5 months (range, 0.2–1.8 months) in patients treated with dasatinib and 0.9 months (range, 0.4–5 months) for patients treated with dasatinib and erlotinib in combination. Pleural effusions and dyspnea were frequent toxicities.Conclusions:Dasatinib has no activity in patients with EGFR-mutant lung adenocarcinoma with acquired resistance to erlotinib and gefitinib

    Distinct Clinical Course of EGFR-Mutant Resected Lung Cancers: Results of Testing of 1118 Surgical Specimens and Effects of Adjuvant Gefitinib and Erlotinib

    Get PDF
    Background:EGFR and KRAS mutations are mutually exclusive and predict outcomes with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment in patients with stage IV lung cancers. The clinical significance of these mutations in patients with resected stage I–III lung cancers is unclear.Methods:At our institution, resection specimens from patients with stage I–III lung adenocarcinomas are tested for the presence of EGFR or KRAS mutations during routine pathology analysis such that the results are available before consideration of adjuvant therapy. In a cohort of 1118 patients tested over 8 years, overall survival was analyzed using multivariate analysis to control for potential confounders, including age, sex, stage, and smoking history. The impact of adjuvant erlotinib or gefitinib was examined in an independent data set of patients exclusively with EGFR mutation, in which date of recurrence was recorded.Results:In the overall population, we identified 227 KRAS (25%) and 222 EGFR (20%) mutations. Patients with EGFR-mutant lung cancers had a lower risk of death compared with those without EGFR mutations, overall survival (OS) HR 0.51 (95% confidence interval [CI]: 0.34–0.76, p < 0.001). Patients with KRAS-mutant lung cancers had similar outcomes compared with individuals with KRAS wild-type tumors, OS HR 1.17 (95% CI: 0.87–1.57, p = 0.30). A separate data set includes only patients with EGFR-mutant lung cancers identified over 10 years (n = 286). In patients with resected lung cancers and EGFR mutation, treatment with adjuvant erlotinib or gefitinib was associated with a lower risk of recurrence or death, disease-free survival HR 0.43 (95% CI: 0.26–0.72, p = 0.001), and a trend toward improved OS.Conclusions:Patients with resected stage I–III lung cancers and EGFR mutation have a lower risk of death compared with patients without EGFR mutation. This may be because of treatment with EGFR TKIs. Patients with, and without KRAS mutation have similar OS. These data support reflex testing of resected lung adenocarcinomas for EGFR mutation to provide prognostic information and identify patients for enrollment on prospective clinical trials of adjuvant EGFR TKIs

    Prognostic Impact of KRAS Mutation Subtypes in 677 Patients with Metastatic Lung Adenocarcinomas

    Get PDF
    BackgroundWe previously demonstrated that patients with metastatic KRAS mutant lung cancers have a shorter survival compared with patients with KRAS wild-type cancers. Recent reports have suggested different clinical outcomes and distinct activated signaling pathways depending on KRAS mutation subtype. To better understand the impact of KRAS mutation subtype, we analyzed data from 677 patients with KRAS mutant metastatic lung cancer.MethodsWe reviewed all patients with metastatic or recurrent lung cancers found to have KRAS mutations over a 6-year time period. We evaluated the associations among KRAS mutation type, clinical factors, and overall survival in univariate and multivariate analyses. Any significant findings were validated in an external multi-institution patient dataset.ResultsAmong 677 patients with KRAS mutant lung cancers (53 at codon 13, 624 at codon 12), there was no difference in overall survival for patients when comparing KRAS transition versus transversion mutations (p = 0.99), smoking status (p = 0.33), or when comparing specific amino acid substitutions (p = 0.20). In our dataset, patients with KRAS codon 13 mutant tumors (n = 53) had shorter overall survival compared with patients with codon 12 mutant tumors (n = 624) (1.1 versus 1.3 years, respectively; p = 0.009), and the findings were confirmed in a multivariate Cox model controlling for age, sex, and smoking status (hazard ratio: 1.52, 95% confidence interval: 1.11–2.08; p = 0.008). In an independent validation set of tumors from 682 patients with stage IV KRAS mutant lung cancers, there was no difference in survival between patients with KRAS codon 13 versus codon 12 mutations (1.0 versus 1.1 years, respectively; p = 0.41).ConclusionsAmong individuals with KRAS mutant metastatic lung cancers treated with conventional therapy, there are no apparent differences in outcome based on KRAS mutation subtype

    KRAS Mutations and Primary Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib

    Get PDF
    BACKGROUND: Somatic mutations in the gene for the epidermal growth factor receptor (EGFR) are found in adenocarcinomas of the lung and are associated with sensitivity to the kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva). Lung adenocarcinomas also harbor activating mutations in the downstream GTPase, KRAS, and mutations in EGFR and KRAS appear to be mutually exclusive. METHODS AND FINDINGS: We sought to determine whether mutations in KRAS could be used to further enhance prediction of response to gefitinib or erlotinib. We screened 60 lung adenocarcinomas defined as sensitive or refractory to gefitinib or erlotinib for mutations in EGFR and KRAS. We show that mutations in KRAS are associated with a lack of sensitivity to either drug. CONCLUSION: Our results suggest that treatment decisions regarding use of these kinase inhibitors might be improved by determining the mutational status of both EGFR and KRAS

    ‘Classical' but not ‘other' mutations of EGFR kinase domain are associated with clinical outcome in gefitinib-treated patients with non-small cell lung cancer

    Get PDF
    ‘Classical' mutations in the EGFR tyrosine kinase domain (exons 18, 19 and 21) have been associated with sensitivity to tyrosine kinase inhibitors (TKIs) in patients with NSCLC. The aim of the current study was to evaluate whether other than the classical G719X, DEL19 and L858R mutations of EGFR confer sensitivity to TKIs. Genomic DNA was extracted from microdissected formalin-fixed paraffin-embedded tumour tissue from 86 patients treated with gefitinib. Exons 18, 19 and 21 were amplified and subjected to direct sequencing. Eleven (13%) patients harboured the classical exon's 18, 19 and 21 mutations, while 14 (16%) had ‘other' variants. There was a significantly higher percentage of ‘never-smoker' patients with ‘classical' EGFR mutations (P=0.002). Among patients with ‘classical' mutations 3 patients achieved PR and 7 SD, while in the ‘other' mutations group 10 patients had SD as best response. In the wild-type group, there were 3 patients with PR and 25 with SD. Median TTP was 16, 64 (P=0.002) and 21 weeks and median survival was 36, 78 and 67 weeks for patients with wild-type, ‘classical' and ‘other' EGFR mutations, respectively. The clinical relevance of ‘other' EGFR mutation variants remains uncertain and requires further assessment in a prospective study

    Acquired Resistance to KRAS (G12C) Inhibition in Cancer

    Get PDF
    BACKGROUND: Clinical trials of the KRAS inhibitors adagrasib and sotorasib have shown promising activity in cancers harboring KRAS glycine-to-cysteine amino acid substitutions at codon 12 (KRAS(G12C)). The mechanisms of acquired resistance to these therapies are currently unknown. METHODS: Among patients with KRAS(G12C) -mutant cancers treated with adagrasib monotherapy, we performed genomic and histologic analyses that compared pretreatment samples with those obtained after the development of resistance. Cell-based experiments were conducted to study mutations that confer resistance to KRAS(G12C) inhibitors. RESULTS: A total of 38 patients were included in this study: 27 with non-small-cell lung cancer, 10 with colorectal cancer, and 1 with appendiceal cancer. Putative mechanisms of resistance to adagrasib were detected in 17 patients (45% of the cohort), of whom 7 (18% of the cohort) had multiple coincident mechanisms. Acquired KRAS alterations included G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C, and high-level amplification of the KRAS(G12C) allele. Acquired bypass mechanisms of resistance included MET amplification; activating mutations in NRAS, BRAF, MAP2K1, and RET; oncogenic fusions involving ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN. In two of nine patients with lung adenocarcinoma for whom paired tissue-biopsy samples were available, histologic transformation to squamous-cell carcinoma was observed without identification of any other resistance mechanisms. Using an in vitro deep mutational scanning screen, we systematically defined the landscape of KRAS mutations that confer resistance to KRAS(G12C) inhibitors. CONCLUSIONS: Diverse genomic and histologic mechanisms impart resistance to covalent KRAS(G12C) inhibitors, and new therapeutic strategies are required to delay and overcome this drug resistance in patients with cancer. (Funded by Mirati Therapeutics and others; ClinicalTrials.gov number, NCT03785249.)
    corecore